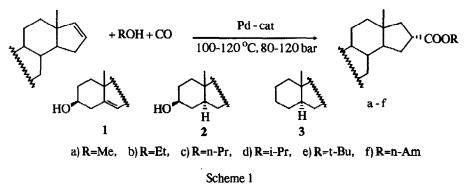
Hydroalkoxycarbonylation of Androstene Derivatives

Szilárd Tőrös^{*} and Bálint Heil

Department of Organic Chemistry, University of Veszprém, H-8201 Veszprém, P.O.Box 158, Hungary

György Gálik and Zoltán Tuba


Chemical Works of Gedeon Richter Ltd., H-1103 Budapest, Gyömrői út 19/21, Hungary

Key Words: steroid; homogeneous catalysis; hydroalkoxycarbonylation; palladium catalyst; androstene derivatives

Abstract: Various esters are conveniently prepared by direct hydroesterification of the corresponding androstene derivatives with alcohols and carbon monoxide catalyzed by a palladium-phosphine catalyst with high stereoselectivity.

Introduction of alkoxycarbonyl groups into steroids via catalytic carbonylation has been investigated since years¹. Earlier only one steroid-ester of this type has been synthesized in a multi-step reaction of low chemical yield².

In this paper hydroalkoxycarbonylation of several androstene derivatives with high stereoselectivity is outlined (Scheme 1). Some representative results of our systematic investigation are summarized in Table 1. The substrates (1-3) were prepared from dehydroepiandrosterone, epiandrosterone and 5α -androstan-17-one by the vinyl iodide route³.

The reaction products were investigated by GC and 4 isomers were found but after fractional crystallization only the major compound was detected by NMR-spectroscopy.

In the hydroalkoxicarbonylation of (1) the double bond in position 5 remains intact even under more severe reaction conditions because of the steric hindrance. The reaction of Δ^{16} was carried out with high chemo- and regioselectivity. In a tipical experiment the solid substrate (1) (20 mmol), 0.25 mmol PdCl₂(PPh₃)₂ and 150 ml methanol were transferred under carbon monoxide to a 300 ml stainless steel autoclave equipped with a magnetic stirrer. The autoclave was pressurized to 120 bar CO pressure and placed in an oil bath. The reaction product was prepared by fractional crystallization in 83 % yield, and its structure was based on MS, IR and NMR data.

Steroid	Alcohol	P _{CO} , bar	Temp., °C	Conversion, %/6h	Ratio of ester isomers, % a)			
					A	В	С	D
1	MeOH	80	100	99	<1	94*	4	1
1	EtOH	120	120	100	7	90	2	1
2	MeOH	120	120	100	7	83*	2	8
2	EtOH	120	120	98	9	80*	6	5
2	i-PrOH	80	100	94	13	69	14	4
2	t-BuOH	80	100	80	15	80	3	2
3	MeOH	120	120	100	10	85*	4	1

Table 1. Hydroalkoxycarbonylation of Androst-16-ene Derivatives with the Pd(PPh_3)2Cl2 Catalyst

a) determined by GLC * prepared and its structure determined by NMR

In the ¹H-NMR investigation of the separated **2a** product the splitting of 16-H proved the 16- α position of the functional group (¹H-NMR: Varian XLAA-400 MHz (CDCl₃): 0.74 (s, 3H, 18-CH₃), 0.81 (s, 3H, 19-CH₃), 2.91 (m, ³J_{16β,176} ~9.0, ³J_{16β,17α} ~11.2, ³J_{16β,15α} ~2.9, ³J_{16β,15β}~9.0, 1H, 16β-H), 3.59 (m, 1H, 3α-H), ¹³C-NMR: 101 MHz (CDCl₃): 12.3 (19-CH₃), 17.7 (18-CH₃), 51.7 (-OCH₃), 178.1 (-CO-)).

The same stereochemistry of the compound was supported also by its m.p. 117-118 °C and $[\alpha]_D^{20}$ +13.4 ° (c=2.5 in CHCl₃) value corresponding to the data reported by Fajkos². MS: m/e (rel. intensity): 334 (1000) M⁺, 319 (110) M⁺-CH₃, 316 (210) M⁺-H₂O, 301 (190) M⁺-OCH₃; IR: ν_{CO}

MS: m/e (rel. intensity): 334 (1000) M², 319 (110) M²-CH₃, 316 (210) M²-H₂O, 301 (190) M²-OCH₃; IR: ν_{CO} = 1723 cm⁻¹.

The spectroscopic data of the new derivative 1a, first synthesized by us: ¹H-NMR: Varian VXR-300 MHz (CDCl₃): 0.77 (s, 3H, 18-CH₃), 1.01 (s, 3H, 19-CH₃), 3.67 (s, 3H, -OCH₃), 2.95 (m, ³J_{16β,17β}~9.2, ³J_{16β,17α}~11.8, ³J_{16β,15α}~3.0, ³J_{16β,15β}~9.2, 1H, 16β-H), 3.53 (m, 1H, 3α-H), 5.35 (m, 1H, 6-H);

¹³C-NMR: 75 MHz (CDCl₃): 17.4 (18-CH₃), 19.4 (19-CH₃), 51.7 (-OCH₃), 121.4 (6-CH), 140.7 (5-C), 178.1 (-CO-); MS: m/e (rel. intensity) = 332 (680) M⁺, 317 (340) M⁺-CH₃, 314 (970) M⁺-H₂O, 299 (1000) M⁺-OCH₃; IR: $\nu_{CO} = 1724$ cm⁻¹; m.p. 54-55 °C.

The 2.95 ppm proton signal of 1a can be assigned to H-16. The minor positiv shift (1 ppm) of C-13 and the C-14 negativ shift (-1.2 ppm) compared to the corresponding signals in 3β -OH-androstane supports the 16 α location of the substituent⁴. The same stereochemistry was also proved by NOE measurements. While irradiation at 18-Me (0.77 ppm) resulted in an increase of the H-16 proton signal, in the opposite case i.e. irradiation at 2.95 ppm caused an increase at the 18-Me protons. Both facts prove the H-16 β position, consequently the -COOCH₃ group must be located in the 16 α position.

Acknowledgements: We thank G. Balogh (Gedeon Richter Ltd.) and S. Iglewski (University of Veszprém) for recording the 300 MHz ¹H and ¹³C-NMR spectra, Gy. Marton and I. Bátori (University of Veszprém) for technical assistance. This work was supported by the Hungarian National Science Foundation (OTKA 466 and OTKA 605).

References

- Tőrös, S.; Kollár, L.; Heil, B.; Tuba, Z. XIII th International Conference on Organometallic Chemistry, Torino, Sept. 4-9, 1988, Proc. 359.
- 2 Fajkoš, J.; Šorm, F. Chem. listy, 1953, 47, 1836-1848.
- 3 Cox, P. J.; Turner, A. B. Tetrahedron, 1984, 40, 3153-3158.
- 4 Blunt, J. W.; Stothers, J. B. Org. Magn. Reson., 1977, 9, 439-464.